PROJECT MEMORANDUM

DATE:

March 30, 1993

TO:

Joe Depner, Hydrogeologist

FROM:

Nels Cone, Chemist

SUBJECT:

DATA VALIDATION OF ANALYTICAL RESULTS FROM PIER 91 RCRA

FACILITY INVESTIGATION, PROJECT 624878, DATA SET #8A

On January 9, 1993, soil samples were collected by Burlington Environmental Inc. personnel. These samples were submitted to Sound Analytical Services of Tacoma, Washington for volatile organic (EPA SW-846 Method 8240), semivolatile organic (EPA SW-846 Method 8270), and Total Petroleum Hydrocarbon (EPA SW-846 Methods 418.1 and 8015) analyses (work order 29709). I performed a review of the analytical results for samples CP-122AC-2-4, CP-122AC-6-8, and CP-122AC-22-24.

Properly completed chain-of-custody forms were included, along with documented signatures from field to laboratory receipt. The samples were shown as having been properly iced and received in good condition. Holding times were clearly written and evaluated according to regulatory protocol (*National Functional Guidelines for Organic Data Review*, USEPA, 1990). The samples received the analyses as required by the Quality Assurance Project Plan (QAPP), and laboratory extraction/analysis times met the established guidelines.

Matrix spike/ matrix spike duplicate analyses displayed analytical accuracy within required guidelines. Duplicate analysis met requisite precision criteria. Method blank data met acceptable quality control (QC) limits. Sample results received the appropriate "B" data qualifier flags when lab contaminants (i.e., methylene chloride, di-n-butylphthalate, or bis(2-ethylhexyl)phthalate) were found in the method blanks.

Sample CP-122AC-2-4 was diluted to ensure target analytes were within instrument calibration range. As a result of required dilution, elevated detection limits are reported for semivolatile organic analysis, and three surrogate recoveries were outside QC limits. Regardless, the data quality objectives as defined in Table F-2 of the QAPP are met. Accordingly, this data set can be considered valid for its intended use.

USEPA RCRA

NC/rlk/b46:2177b.mem

FILE COPY

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

February 23, 1993

TO: Burlington Environmental Engineering

PROJECT NUMBER: 624878-7302

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 29709

Samples were taken on 1/19/93 and were received at Sound on 1/21/93. Samples were analyzed for Volatile Organics in accordance with EPA SW-846 Method 8240, Semivolatile Organics in accordance with EPA SW-846 Method 8270, Total Petroleum Hydrocarbons by EPA Method 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA Method 8015 modified.

VOLATILE ORGANICS

Samples 29709-1 through 29709-3 were extracted and analyzed on 1/25/93. Methylene chloride was detected in the method blank at a level above the PQL. Sample results for methylene chloride were flagged B to indicate this. All QC parameters were within acceptance limits.

SEMIVOLATILE ORGANICS

Samples 29709-1 through 29709-3 were extracted and analyzed on 1/27/93. Sample 29709-1 was diluted due to high TPH concentration. No target analytes were detected in the method blank above the PQL. The relative percent difference value for bis(2-ethylhexyl)phthalate in the duplicate analysis exceeded QC limits, but the compound was present at concentrations below the PQL. MS/MSD percent recoveries for 1,2,4-trichlorobenzene and 1,4-dichlorobenzene were below QC limits. All other QC parameters were within acceptance limits.

TOTAL PETROLEUM FUEL HYDROCARBONS

Samples 29709-1 through 29709-3 were extracted and analyzed on 1/22/93. No contamination above the PQL was present in the method blank. Sample 29709-1 was flagged X2 to note the presence of atypical compounds that fall across multiple product ranges. The percent recovery for one surrogate in sample 29709-1 was outside QC limits due to high contaminant levels. All other QC parameters were within acceptance limits.

TOTAL PETROLEUM HYDROCARBONS

Samples 29709-1 through 29709-3 were extracted and analyzed on 1/26/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental, Date: February 19, 1993

Technical Services

Report On: Analysis of Soil Lab No.: 29709

Page 1 of 18

IDENTIFICATION:

Sample received on 01-21-93 Project: 624878-7302 Pier 91

ANALYSIS:

Lab No. 29709-1

Client ID: CP-122AC-2-4

Volatile Organics by Method 8240 Date Extracted: 1-25-93

Date Extracted: 1-25-93
Date Analyzed: 1-25-93

Compound	Concentration ug/kg	PQL	Flag
Compound Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate		PQL 500 500 500 250 250 250 250 250 250 25	Flag
Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane	ND ND ND ND ND ND	250 250 250 250 250 250	

ND = Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 2 of 18 Lab No. 29709

February 19, 1993

Lab No. 29709-1

Client ID: CP-122AC-2-4

8240 Continued .

Benzene ND 250 Trans-1,3-Dichloropropene ND 250 Bromoform ND 250 4-Methyl-2-Pentanone ND 1,250 2-Hexanone ND 250 Tetrachloroethene ND 250 1,1,2,2-Tetrachloroethane ND 250 Toluene ND 250 Chlorobenzene ND 250 Ethyl Benzene ND 250				
Trans-1,3-Dichloropropene ND 250 Bromoform ND 250 4-Methyl-2-Pentanone ND 1,250 2-Hexanone ND 250 Tetrachloroethene ND 250 1,1,2,2-Tetrachloroethane ND 250 Toluene ND 250 Chlorobenzene ND 250 Ethyl Benzene ND 250	Compound		PQL	Flag
Total Xylenes ND 250 ND 250	Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene	ND	250 250 1,250 250 250 250 250 250 250	•

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Toluene - D8	100	88 - 110	81 - 117
Bromofluorobenzene	104	86 - 115	74 - 121
1,2-Dichloroethane-D4	93	76 - 114	70 - 121

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 3 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-1

Client ID: CP-122AC-2-4

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 1-27-93 Date Analyzed: 2-5-93

	 		
	Concentration		
Compound	ug/kg	PQL	Flag
Phenol	ND	3,900	
bis(2-Chloroethyl) ether	ND	3,900	
2-Chlorophenol	ND	3,900	
1,3-Dichlorobenzene	ND	3,900	
1,4-Dichlorobenzene	ND	3,900	
Benzyl Alcohol	ND	7,800	
1,2-Dichlorobenzene	ND	3,900	
2-Methylphenol	ND	3,900	
bis(2-Chloroisopropyl)ether	ND	3,900	
4-Methylphenol	ND	3,900	
N-Nitroso-Di-N-propylamine	ND	3,900	
Hexachloroethane	ND	3,900	
Nitrobenzene	ND	3,900	
Isophorone	ND	3,900	
2-Nitrophenol	ND	3,900	
2,4-Dimethylphenol	ND	3,900	
Benzoic Acid	ND	19,000	
bis(2-Chloroethoxy)methane	ND	3,900	
2,4-Dichlorophenol	ND	3,900	
1,2,4-Trichlorobenzene	ND	3,900	
Naphthalene	ND	3,900	
4-Chloroaniline	ND	7,800	
Hexachlorobutadiene	ND	3,900	
4-Chloro-3-methylphenol	ND	7,800	

ND - Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 4 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-1

Client ID: CP-122AC-2-4

EPA Method 8270 Continued

Compound	Concentration ug/kg	PQL	Flag
2-Methylnaphthalene	ND	3,900	
Hexachlorocyclopentadiene	ND	3,900	
2,4,6-Trichlorophenol	ND	3,900	
2,4,5-Trichlorophenol	ND	3,900	
2-Chloronaphthalene	ND	3,900	
2-Nitroaniline	ND	19,000	
Dimethyl phthalate	ND	3,900	
Acenaphthylene	ND	3,900	
2,6-Dinitrotoluene	ND	3,900	
3-Nitroaniline	ND	19,000	
Acenaphthene	ND	3,900	
2,4-Dinitrophenol	ND	19,000	
4-Nitrophenol	ND	19,000	F 7.
Dibenzofuran	ND	3,900	
2,4-Dinitrotoluene	ND	3,900	
Diethylphthalate	ND	3,900	
4-Chlorophenyl phenyl ether	ND	3,900	
Fluorene	ND	3,900	
4-Nitroaniline	ND	19,000	
4,6-Dinitro-2-methylphenol	ND	19,000	
N-Nitrosodiphenylamine	ND	3,900	
4-Bromophenyl phenyl ether	ND	3,900	
Hexachlorobenzene	ND	3,900	
Pentachlorophenol	ND	19,000	
Phenanthrene	ND	3,900	
Anthracene	ND	3,900	
Di-n-butylphthalate	ND	3,900	

ND - Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 5 of 18 Lab No. 29709

February 19, 1993

Lab No. 29709-1

Client ID: CP-122AC-2-4

EPA Method 8270 Continued

Compound Concentration ug/kg PQL Flag Fluoranthene ND 3,900 <th>Dili iloonoa oz o concernada</th> <th></th> <th>CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE</th> <th>Control of the Control of the Contro</th>	Dili iloonoa oz o concernada		CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE	Control of the Contro
Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900	Compound		PQL	Flag
	Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	ND N	3,900 3,900 7,800 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900	

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	67	35 - 114	23 - 120
	100	43 - 116	30 - 115
	84	33 - 141	18 - 137
	73	10 - 94	24 - 113
	71	21 - 100	25 - 121
	67	10 - 123	19 - 122

Burlington Environmental, Technical Services Project: 624878-7302 Pier 91 Page 6 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-1

Client ID: CP-122AC-2-4

TPH Per EPA Method 418.1 Date Extracted: 1-26-93 Date Analyzed: 1-26-93

Total Petroleum Hydrocarbons, mg/kg

900

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 1-26-93 Date Analyzed: 1-26-93

Total Petroleum

Fuel Hydrocarbons, mg/kg 2,600 X2

TPH as Aged Gasoline, Diesel

SURROGATE RECOVERY, %

1-chlorooctane 120 o-terphenyl 176 X10

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 7 of 18 Lab No. 29709

February 19, 1993

Lab No. 29709-2

Client ID: CP-122AC-6-8

Volatile Organics by Method 8240

Date Extracted: 1-25-93 Date Analyzed: 1-25-93

Compound	Concentration ug/kg	PQL	Flag
Compound Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane		PQL 500 500 500 500 250 250 250 250 250 25	Flag B J
1,2-Dichloropropane Cis-1,3-Dichloropropene	ND ND	250 250	
Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane	ND ND ND	250 250 250	

ND = Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 8 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-2

Client ID: CP-122AC-6-8

8240 Continued . . .

Compound	Concentration ug/kg	PQL	Flag
Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes	ND N	250 250 250 1,250 250 250 250 250 250 250 250	

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Toluene - D8	103	88 - 110	81 - 117
Bromofluorobenzene	95	86 - 115	74 - 121
1,2-Dichloroethane-D4	94	76 - 114	70 - 121

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 9 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-2

Client ID: CP-122AC-6-8

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 1-27-93 Date Analyzed: 2-5-93

			A
Compound	Concentration ug/kg	PQL	Flag
Phenol	ND	790	
bis(2-Chloroethyl) ether	ND	790	
2-Chlorophenol	ND	790	
1,3-Dichlorobenzene	ND	790	
1,4-Dichlorobenzene	ND	790	
Benzyl Alcohol	ND	1,600	
1,2-Dichlorobenzene	ND	790	
2-Methylphenol	ND	790	
bis(2-Chloroisopropyl)ether	ND	790	
4-Methylphenol	ND	790	
N-Nitroso-Di-N-propylamine	ND	790 790	
Hexachloroethane	ND ND	790	
Nitrobenzene	ND ND	790	
Isophorone	ND ND	790	
2-Nitrophenol	ND ND	790	
2,4-Dimethylphenol Benzoic Acid	ND ND	4,000	
bis(2-Chloroethoxy)methane	ND ND	790	
2,4-Dichlorophenol	ND ND	790	
1,2,4-Trichlorobenzene	ND	790	
Naphthalene	ND	790	
4-Chloroaniline	ND	1,600	
Hexachlorobutadiene	ND	790	
4-Chloro-3-methylphenol	ND	1,600	

ND - Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 10 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-2

Client ID: CP-122AC-6-8

EPA Method 8270 Continued

Compound	Concentration ug/kg	PQL	Flag
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene		790 790 790 790 790 790 4,000 790 790 4,000 790	Flag
2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether	ND N	4,000 4,000 790 790 790 790 790 4,000 4,000 790	
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	ND ND ND ND ND	790 4,000 790 790 790	

ND - Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 11 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-2

Client ID: CP-122AC-6-8

EPA Method 8270 Continued

Compound	Concentration ug/kg	PQL	Flag
Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND N	790 790 790 1,600 790 790 790 790 790 790 790	В,Ј

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

Surrogate Compound	Percent	Control	Limits
	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	41	35 - 114	23 - 120
	82	43 - 116	30 - 115
	88	33 - 141	18 - 137
	70	10 - 94	24 - 113
	48	21 - 100	25 - 121
	59	10 - 123	19 - 122

Burlington Environmental, Technical Services Project: 624878-7302 Pier 91 Page 12 of 18

Lab No. 29709 February 19, 1993

Lab No. 29709-2

Client ID: CP-122AC-6-8

TPH Per EPA Method 418.1 Date Extracted: 1-26-93 Date Analyzed: 1-26-93

Total Petroleum Hydrocarbons, mg/kg

630

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 1-26-93

Date Analyzed: 1-26-93

Total Petroleum

Fuel Hydrocarbons, mg/kg

570

TPH as

Aged Gasoline, Diesel

SURROGATE RECOVERY, %

1-chlorooctane 124 o-terphenyl 126

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 13 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-3

Client ID: CP-122AC-22-24

Volatile Organics by Method 8240

Date Extracted: 1-25-93 Date Analyzed: 1-25-93

Compound	Concentration ug/kg	PQL	Flag
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane	ND ND ND 380 300 ND	500 500 500 250 250 250 250 250	В

ND = Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 14 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-3

Client ID: CP-122AC-22-24

8240 Continued . . .

Concentration ug/kg PQL Flag	02:0 00::02::00			
Trans-1,3-Dichloropropene ND 250 Bromoform ND 250 4-Methyl-2-Pentanone ND 1,250 2-Hexanone ND 250 Tetrachloroethene ND 250 1,1,2,2-Tetrachloroethane ND 250 Toluene ND 250 Chlorobenzene ND 250 Ethyl Benzene ND 250 Styrene ND 250	Compound		PQL	Flag
Total Mylanes	Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene	ND ND ND ND ND ND ND ND	250 250 1,250 250 250 250 250 250	

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4	104	88 - 110	81 - 117
	83	86 - 115	74 - 121
	92	76 - 114	70 - 121

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 15 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-3

Client ID: CP-122AC-22-24

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 1-27-93 Date Analyzed: 2-4-93

Compound	Concentration ug/kg	PQL	Flag
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol	ND ND ND ND ND	810 810 810 810 810	
1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine	ND ND ND ND	810 810 810 810	
Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND	810 810 810 810 810	
Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene	ND ND ND ND ND	4,100 810 810 810 810	
4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND ND	1,600 810 1,600	

ND - Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 16 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-3

Client ID: CP-122AC-22-24

EPA Method 8270 Continued

Compound	Concentration ug/kg	PQL	Flag
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol	NEAST	810 810 810 810 810 4,100 810 4,100 810 4,100	Flag
4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene	ND N	4,100 810 810 810 810 810 4,100 4,100 810 810 810 810	J
Anthracene Di-n-butylphthalate	ND 280	810 810	B,J

ND - Not Detected

Burlington Environmental, Technical Services

Project: 624878-7302 Pier 91

Page 17 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-3

Client ID: CP-122AC-22-24

EPA Method 8270 Continued

Compound	Concentration ug/kg	PQL	Flag
Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND 150 ND	810 810 810 1,600 810 810 810 810 810 810 810 810	в,Ј

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	49	35 - 114	23 - 120
	69	43 - 116	30 - 115
	89	33 - 141	18 - 137
	82	10 - 94	24 - 113
	67	21 - 100	25 - 121
	86	10 - 123	19 - 122

Burlington Environmental, Technical Services Project: 624878-7302 Pier 91 Page 18 of 18 Lab No. 29709 February 19, 1993

Lab No. 29709-3

Client ID: CP-122AC-22-24

TPH Per EPA Method 418.1 Date Extracted: 1-26-93 Date Analyzed: 1-26-93

Total Petroleum Hydrocarbons, mg/kg

22

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 1-26-93

Date Analyzed: 1-26-93

Total Petroleum Fuel Hydrocarbons, mg/kg

15

TPH as

Aged Gasoline, Diesel

SURROGATE RECOVERY, %

1-chlorooctane o-terphenyl

114 129

SOUND ANALYTICAL SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

VOLATILE ORGANICS PER EPA METHOD 8240

Page 1 of 2

METHOD BLANK

Blank Value

POL

200 200

200

200

200

Client: Burlington Environmental, Technical Services

Lab No: 29709qc1 Units: ug/kg

Date: February 19, 1993

Toluene

Styrene

Chlorobenzene

Ethyl Benzene

Total Xylenes

Blank No: V8082

Compound	Blank value	PQL	FLAGS
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane	ND ND ND ND 260 ND	400 400 400 200 200 200 200 200 200 200	FLAGS
1,2-Dichloropropane Cis-1,3-Dichloropropene	ND ND	200 200	
Trichloroethene Dibromochloromethane	ND ND	200 200	
1,1,2-Trichloroethane Benzene	ND ND	200 200	
Trans-1,3-Dichloropropene Bromoform	ND ND ND	200 200	
4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene	ND ND	1,000 200 200	
1,1,2,2-Tetrachloroethane	NAME OF TAXABLE PARTY O	200	

Continued

ND

ND

ND

ND

ND

QUALITY CONTROL REPORT

VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc1

Units:

ug/kg

Date:

February 19, 1993

Blank No: V8082

METHOD BLANK

ND - Not Detected

PQL - Practical Quantitation Limit

VOLATILE SURROGATES

Surrogate	Percent	Control	Limits
	Recovery	Water	Soil
Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4	105	86 - 115	81 - 117
	103	76 - 114	74 - 121
	94	88 - 110	70 - 121

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc2

Units:

ug/kg

Date:

February 19, 1993

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MSD No. 29	709-3							
Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	₹R	Spike Dup Result (MSD)	Spike Added (SA)	%R	RPD
1,1-DCE	ND	3,500	2,400	146	3,500	2,400	146	0.0
TCE	ND	1,800	2,400	75.0	1,800	2,400	75.0	0.0
Chloro- benzene	ND	2,000	2,400	83.3	1,900	2,400	79.1	5.1
Toluene	ND	1,900	2,400	79.1	1,900	2,400	79.1	0.0
Benzene	ND	1,700	2,400	70.8	1,700	2,400	70.8	0.0

RPD = Relative Percent Difference

% REC = Percent Recovery

= [(MS - SAMPLE RESULT) / SPIKE] x 100

Advisory Limits:

	RPD	<pre>% RECOVERY</pre>	
1,1-Dichloroethene	22	59 - 172	
Trichloroethene	24	62 - 137	
Chlorobenzene	21	60 - 133	
Toluene	21	59 - 139	
Benzene	21	66 - 142	

 $^{= [(}MS - MSD) / ((MS + MSD) / 2)] \times 100$

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc3

Matrix:

Soil

Units:

mg/kg

Date:

February 19, 1993

DUPLICATE

Dup. No. 29709-3			
Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Fuel Hydrocarbons	15	13	17.1
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	114 129	107 119	

RPD = relative percent difference
=
$$[(S - D) / ((S + D) / 2)] \times 100$$

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MSD No. 29709-3					
Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Flag
Total Petroleum Fuel Hydrocarbons	30	527	405	123	

%R = Percent Recovery
= [(MS - SR) / SA] x 100

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc3

Matrix:

Soil

Units: Date:

mg/kg February 19, 1993

BLANK SPIKE RECOVERY

BS No. 004F0101.D			
Parameter	Spike Added	Spike Recovered	%R
Diesel	405	487	120

%R = Percent Recovery $= [(MS - SR) / SA] \times 100$

METHOD BLANK

Blank No. 003F0101.D	
Parameter	Blank Value
Total Petroleum Fuel Hydrocarbons	< 10
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	104 103

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc4

Matrix:

Soil

Units:

mg/kg

Date:

February 19, 1993

DUPLICATE

Dup No. 29709-3

Parameter	Sample(S)	Duplicate(D)	RPD	Flag
Total Petroleum Hydrocarbons	22	22	0.0	

RPD = Relative Percent Difference = $[(S - D) / ((S + D) / 2)] \times 100$

MATRIX SPIKE RECOVERY

MSD No. 29709-3			,		
Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Flag
Total Petroleum Hydrocarbons	22	1,100	1,120	96.3	

%R = Percent Recovery
= [(MS - SR) / SA] x 100

RPD = Relative Percent Difference
= [(MS - MSD) / ((MS + MSD) / 2)] x 100

METHOD BLANK

Parameter	Blank Value
Total Petroleum Hydrocarbons	< 10

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc5

Units:

ug/kg

Date:

February 19, 1993

Blank No: SBLK25-S7542

MET	'HO	D	\mathtt{BL}	ANK

Compound	Blank Value	PQL	Flags
Phenol	ND	670	
bis(2-Chloroethyl) ether	ND	670	
2-Chlorophenols	ND	670	
1,3-Dichlorobenzene	ND	670	
1,4-Dichlorobenzene	ND	670	
Benzyl Alcohol	ND	1,300	
1,2-Dichlorobenzene	ND	670	
2-Methylphenol	ND	670	
bis(2-Chloroisopropyl)ether		670	
4-Methylphenol	ND	670	
N-Nitroso-Di-N-propylamine	ND	670	
Hexachloroethane	ND	670	
Nitrobenzene	ND	670	
Isophorone	ND	670	
2-Nitrophenol	ND	670	
2,4-Dimethylphenol	ND	670	
Benzoic Acid	ND .	3,300	
bis(2-Chloroethoxy)methane	ND	670	
2,4-Dichlorophenol	ND	670	
1,2,4-Trichlorobenzene	ND	670	
Naphthalene	ND	670	
4-Chloroaniline	ND	1,300	
Hexachlorobutadiene	ND	670	
4-Chloro-3-methylphenol	ND	1,300	
2-Methylnaphthalene	ND	670	
Hexachlorocyclopentadiene	ND	670	
2,4,6-Trichlorophenol	ND	670	
2,4,5-Trichlorophenol	ND	670	
2-Chloronaphthalene	ND	670	
2-Nitroaniline	ND	3,300	
Dimethyl phthalate	ND	670	
Acenaphthylene	ND	670	

SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 2 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc5

Units:

ug/kg

Date:

February 19, 1993

Blank No: SBLK25-S7542

METHOD BLANK

Compound	Blank Value	PQL	Flags
Compound	Blank value	FQL	riags
3-Nitroaniline	ND	3,300	
Acenaphthene	ND	670	
2,4-Dinitrophenol	ND	3,300	
4-Nitrophenol	ND	3,300	
Dibenzofuran	ND	670	
2,4-Dinitrotoluene	ND	670	
2,6-Dinitrotoluene	ND	670	
Diethylphthalate	ND	670	
4-Chlorophenyl phenyl ether		670	
Fluorene	ND	670	
4-Nitroaniline	ND	3,300	
4,6-Dinitro-2-methylphenol	ND	3,300	П
N-Nitrosodiphenylamine	ND	670	
4-Bromophenyl phenyl ether	ND	670	
Hexachlorobenzene	ND	670	
Pentachlorophenol	ND	3,300	
Phenanthrene	ND	670	
Anthracene	ND	670	
Di-n-butylphthalate	120	670	J
Fluoranthene	ND	670	
Pyrene	ND	670	
Butyl benzyl phthalate	ND	670	
3,3'-Dichlorobenzidine	ND	1,300	
Benzo(a)anthracene	ND	670	
bis(2-ethylhexyl)phthalate	260	670	J
Chrysene	ND	670	
Di-n-octyl phthalate	ND	670	
Benzo(b)fluoranthene	ND	670	
Benzo(k)fluoranthene	ND	670	
Benzo(a)pyrene	ND	670	
Indeno(1,2,3-cd)pyrene	ND	670	
Dibenz(a,h)anthracene	ND	670	
Benzo(g,h,i)perylene	ND	670	

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA METHOD 8270 Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc5

Units:

ug/kg

Date:

February 19, 1993

Blank No: SBLK25-S7542

ND - Not Detected.

PQL - Practical Quantitation Limit

SEMIVOLATILE SURROGATES

Surrogate	Percent	Control	Limits
	Recovery	Water	Soil
Nitrobenzene - d5	90	35 - 114	23 - 120
2-Fluorobiphenyl	87	43 - 116	30 - 115
p-Terphenyl-d14	86	33 - 141	18 - 137
Phenol-d6	89	10 - 94	24 - 113
2-Fluorophenol	91	21 - 100	25 - 121
2,4,6-TBP	75	10 - 123	19 - 122

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

29709qc6

Date:

February 19, 1993

SEMI-VOLATILE ORGANICS

	1	-				-		
SPIKE (ug/kg)	SAMPLE RESULT	CONC MS	% REC	CONC MSD	% REC	RPD	FLAGS	
4,100	4,100 ND		32	1,300	33	3.1	Х6	
4,100	ND	2,700	65	2,700	65	0.0		
4,100 ND		2,900	71	2,900	71	0.0		
4,100	ND	3,000	73	3,200	77	5.3		
4,100	1,100 ND		68	2,900	70	2.9		
4,100	ND	500	12	540	13	8.0	X6	
4,100	ND	1,800	43	2,000	49	13.0		
4,100	ND	2,900	70	2,800	69	1.4		
4,100	ND	2,500	60	2,400	58	3.4		
4,100	ND	3,200	77	3,100	76	1.3		
4,100	ND	3,400	82	3,200	77	6.3		
	(ug/kg) 4,100 4,100 4,100 4,100 4,100 4,100 4,100 4,100 4,100	(ug/kg) RESULT 4,100 ND 4,100 ND	(ug/kg) RESULT MS 4,100 ND 1,300 4,100 ND 2,700 4,100 ND 2,900 4,100 ND 3,000 4,100 ND 2,800 4,100 ND 500 4,100 ND 1,800 4,100 ND 2,900 4,100 ND 2,500 4,100 ND 3,200	(ug/kg) RESULT MS REC 4,100 ND 1,300 32 4,100 ND 2,700 65 4,100 ND 2,900 71 4,100 ND 3,000 73 4,100 ND 2,800 68 4,100 ND 500 12 4,100 ND 1,800 43 4,100 ND 2,900 70 4,100 ND 2,500 60 4,100 ND 3,200 77	(ug/kg) RESULT MS REC MSD 4,100 ND 1,300 32 1,300 4,100 ND 2,700 65 2,700 4,100 ND 2,900 71 2,900 4,100 ND 3,000 73 3,200 4,100 ND 2,800 68 2,900 4,100 ND 1,800 43 2,000 4,100 ND 2,900 70 2,800 4,100 ND 2,500 60 2,400 4,100 ND 3,200 77 3,100	(ug/kg) RESULT MS REC MSD REC 4,100 ND 1,300 32 1,300 33 4,100 ND 2,700 65 2,700 65 4,100 ND 2,900 71 2,900 71 4,100 ND 3,000 73 3,200 77 4,100 ND 2,800 68 2,900 70 4,100 ND 1,800 43 2,000 49 4,100 ND 2,900 70 2,800 69 4,100 ND 2,500 60 2,400 58 4,100 ND 3,200 77 3,100 76	(ug/kg) RESULT MS REC MSD REC RPD 4,100 ND 1,300 32 1,300 33 3.1 4,100 ND 2,700 65 2,700 65 0.0 4,100 ND 2,900 71 2,900 71 0.0 4,100 ND 3,000 73 3,200 77 5.3 4,100 ND 2,800 68 2,900 70 2.9 4,100 ND 500 12 540 13 8.0 4,100 ND 1,800 43 2,000 49 13.0 4,100 ND 2,900 70 2,800 69 1.4 4,100 ND 2,500 60 2,400 58 3.4 4,100 ND 3,200 77 3,100 76 1.3	

RPD = Relative Percent Difference

[%] REC = Percent Recovery

ADVISORY LIMITS:	RPD	<u>* I</u>	REC	OVERY	
1,2,4-Trichlorobenzene	23	38	-	107	
Acenaphthene	19	31	-	137	
2,4 Dinitrotoluene	47	28	-	89	
Pyrene	36	35	-	142	
N-nitrosodi-n-Propylamine	38	41	-	126	
1,4-Dichlorobenzene	27	28	-	104	
Pentachlorophenol	47	17	-	109	
Phenol	35	26	-	90	
2-Chlorophenol	50	25	-	102	
4-Chloro-3-Methylphenol	33	26	-	103	
4-Nitrophenol	50	11	-	114	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 1 of 3

DUPLICATE

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc7

Matrix:

Soil

Units:

mg/kg

2-Chloronaphthalene

Dimethyl phthalate

2-Nitroaniline

Date:

February 23, 1993

Dup No:

29709-3

Compound	Sample (S)	Duplicate (D)	RPD	FLAGS
Phenol	ND	ND	0.0	
bis(2-Chloroethyl) ether	ND	ND	0.0	
2-Chlorophenol	ND	ND	0.0	
1,3-Dichlorobenzene	ND	ND	0.0	
1,4-Dichlorobenzene	ND	ND	0.0	
Benzyl Alcohol	ND	ND	0.0	
1,2-Dichlorobenzene	ND	ND	0.0	
2-Methylphenol	ND	ND	0.0	
bis(2-Chloroisopropyl)ether	ND	ND	0.0	
4-Methylphenol	ND	ND	0.0	
N-Nitroso-Di-N-propylamine	ND	ND	0.0	
Hexachloroethane	ND	ND	0.0	
Nitrobenzene	ND	ND	0.0	
Isophorone	ND	ND	0.0	
2-Nitrophenol	ND	ND	0.0	
2,4-Dimethylphenol	ND	ND	0.0	
Benzoic Acid	ND	ND	0.0	
bis(2-Chloroethoxy)methane	ND .	ND	0.0	
2,4-Dichlorophenol	ND	ND	0.0	
1,2,4-Trichlorobenzene	ND	ND	0.0	
Naphthalene	ND	ND	0.0	
4-Chloroaniline	ND	ND	0.0	
Hexachlorobutadiene	ND	ND	0.0	
4-Chloro-3-methylphenol	ND	ND	0.0	
2-Methylnaphthalene	ND	ND	0.0	
Hexachlorocyclopentadiene	ND	ND	0.0	
2,4,6-Trichlorophenol	ND	ND	0.0	
2,4,5-Trichlorophenol	ND	ND	0.0	

ND

ND

ND

Continued

ND

ND ND 0.0

0.0

0.0

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 2 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

29709qc7

Matrix:

Soil

Units:

ug/kg

Date:

February 23, 1993

Dup No:

29709-3

DI	וסו	гт	$C \Delta$	TE
שע		\perp		LE

	DUPLICATE			
Compound	Sample (S)	Duplicate (D)	RPD	FLAGS
Compound	(5)	(5)	142.15	1 21100
Acenaphthylene	ND	ND	0.0	
3-Nitroaniline	ND	ND	0.0	
Acenaphthene	ND	ND	0.0	
2,4-Dinitrophenol	ND	ND	0.0	
4-Nitrophenol	ND	ND	0.0	
Dibenzofuran	ND	ND	0.0	
2,4-Dinitrotoluene	ND	ND	0.0	
2,6-Dinitrotoluene	ND	ND	0.0	
Diethylphthalate	ND	ND	0.0	
4-Chlorophenyl phenyl ether	ND	ND	0.0	
Fluorene	ND	ND	0.0	
4-Nitroaniline	ND	ND	0.0	
4,6-Dinitro-2-methylphenol	ND	ND	0.0	
N-Nitrosodiphenylamine	ND	ND	0.0	
4-Bromophenyl phenyl ether	ND	ND	0.0	
Hexachlorobenzene	ND	ND	0.0	
Pentachlorophenol	ND	ND	0.0	
Phenanthrene	140	150	6.9	J
Anthracene	ND	ND	0.0	
Di-n-butylphthalate	280	320	13	J/B
Fluoranthene	ND	ND	0.0	
Pyrene	ND	ND	0.0	
Butyl benzyl phthalate	ND	ND	0.0	
3,3'-Dichlorobenzidine	ND	ND	0.0	
Benzo(a)anthracene	ND	ND	0.0	
bis(2-ethylhexyl)phthalate	150	110	33	X4a/J/B
Chrysene	ND	ND	0.0	
Di-n-octyl phthalate	ND	ND	0.0	
Benzo(b)fluoranthene	ND	ND	0.0	
Benzo(k)fluoranthene	ND	ND	0.0	
Benzo(a)pyrene	ND	ND	0.0	
<pre>Indeno(1,2,3-cd)pyrene</pre>	ND	ND	0.0	
Dibenz(a,h)anthracene	ND	ND	0.0	
Benzo(g,h,i)perylene	ND	ND	0.0	
3			1	1

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No: 29709qc7

Matrix: Soil

ug/kg

Units: Date:

February 23, 1993

Dup No:

29709-3

DUPLICATE

ND = Not Detected

RPD = Relative Percent Difference $= [(S - D) / ((S + D) / 2)] \times 100$

SEMIVOLATILE SURROGATES

				l Limits	
Surrogate	Sample	Duplicate	Water	Soil	
Nitrobenzene - d5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-TBP	49 69 89 82 67 86	67 78 96 87 82 85	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

DATA QUALIFIER FLAGS

	DATA QUALIFIER FLAGS
ND:	Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation limit, corrected for sample dilution.
J:	The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
C:	The identification of this analyte was confirmed by GC/MS.
B1:	This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, final exact volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
B2:	This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
E:	The concentration of this analyte exceeded the instrument calibration range.
D:	The reported result for this analyte is calculated based on a secondary dilution factor.
A:	This TIC is a suspected aldol-condensation product.
M:	Quantitation Limits are elevated due to matrix interferences.
S:	The calibration quality control criteria for this compound were not met. The reported concentration should be considered an estimated quantity.
X1:	Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
X2:	Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
X3:	Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
X4:	RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous.
X4a:	RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
X5:	Matrix spike was diluted out during analysis.
X6:	Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
X7:	Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data.
X7a:	
7 k / Ct.	RPD value for MS/MSD outside QC limits due to high contaminant levels.
X8:	RPD value for MS/MSD outside QC limits due to high contaminant levels. Surrogate was diluted out during analysis.

CHAIN OF CUSTODY

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6084

618/281-5120									_			,	,	7	7					
PROJECT	NAME P	El PIER	91	R	FI		4	601	/ ,	/ ,	/ ,	/ /	/ /	/ /		PRESER-				
PROJECT	NUMBER	524875	r		MAJOR TASK 7302	S	Ju	\\$\		1/						/ATIVES				
SAMPLEF	as J. P.	TALI					AN PEOP	4.13) (} (}	1/	/_			/	/ /	's /		REMA	RKS	
LAB DEST	TINATION ,	SAS				ᇫ	. /	- 1/		(1)	/4C	/ /		/	/ /¿	70/	(CHEMIC	AL ANAI	YSIS REQU	JEST
SAMPLE NO.	DATE	TIME	COMO	Spage	SAMPLE LOCATION	NO. OF CONTAINERS	15			0/0	35/		/	1	S S	100E	FORM N	OMBER	IF APPLICA	BLE)
	1/19/43			X	(P-122AC-2-4 CP-122AC-6-4 (P-122AC-32-74	2	1	4	*	1				1						
		1215		X	ep-122AC-6-8	21	X	x	V	K				X		only	1-203.	in	ca'd	
	1114/143	1545		K	(P-122 AC-22-74	2	V	V	X	×				X			0	J	(-,-,	
	111115	12-13-		-	1			-												
			1			1														
			1	 		1	_			 						1				
		 	-			+	<u> </u>		-	-	-					-				
			\vdash	-		+	-			-	-					-				
			+	-		+	-	-	-	-	-	-	-							
			-	-		-	-			-	-									· ·
			-				-													
			-	-			-													
							_													
											L									
RELINQUI	SHED BY								REC	EIVED	BY				٨					
	/	SIG	NATU	RE?		DATE	TII	ME		1	1	4	<u> </u>	SIG	ATURE				DATE	TIME
(1	1		l'	1,	12/1/45	101	5	<	1	III	als	M	. /				1	21	16:15A
-10	11	1 - 1-			1/	4/12	1	-	2		197	2 /	~ 1	_		Name of the Party			1/1	
101	alma				1-0	1-93	//	SOA		2	211	MI	11						12193	115x0
	1				.	-	[•				(7							
	<i>V</i> -						-													
SHIPPING	3 NOTES						•		LAE	NOT	ES									•
	,																			